a2 United States Patent

Song et al.

US009112493B2

US 9,112,493 B2
Aug. 18,2015

(10) Patent No.:
(45) Date of Patent:

(54) PLD EDITOR AND METHOD FOR EDITING
PLD CODE

(71) Applicant: ROCKWELL AUTOMATION
TECHNOLOGIES, INC., Mayfield
Heights, OH (US)

(72) Inventors: Tao Song, Shanghai (CN); Zhen Wei,
Shanghai (CN); Fabio Malaspina,
Twinburg, OH (US); Hongrui Li,
Menomonee Falls, WI (US); Zhiyan
Chen, Shanghai (CN)

(73) Assignee: Rockwell Automation Technologies,

Inc., Mayfield Heights, OH (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/051,617

(58) Field of Classification Search
USPCccoenee 326/38; 713/2; 714/37, 48, 49, 100
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,794,033 A * 8/1998 Aldebertetal. ... 713/100
FOREIGN PATENT DOCUMENTS

EP 2040135 A2
WO 2006065283 Al

3/2009
6/2006

* cited by examiner
Primary Examiner — Daniel D Chang

(57) ABSTRACT

A PLD editor and method for editing PL.D code to be pro-
grammed into a PL.D are provided. The PLD editor includes
an interface, a storage system, and a processing system con-
figured to obtain a PLD code, with the PLD code comprising
one or more logic instruction blocks and corresponding block
parameters for each logic instruction block, with the PLD
code being intended for programming into the PL.D, compare
the one or more logic instruction blocks of the PL.D code to a
subset of the library of logic instruction blocks applicable to
the PLD according to the library of PLD devices, determine
inconsistent logic instruction blocks of the one or more logic
instruction blocks, indicate the inconsistent logic instruction
blocks, and correct the inconsistent logic instruction blocks
using the subset of the library of logic instruction blocks.

20 Claims, 6 Drawing Sheets

(22) Filed: Oct. 11, 2013
(65) Prior Publication Data
US 2015/0102836 Al Apr. 16,2015
(51) Imnt.ClL
GO6F 1107 (2006.01)
GO6F 7/38 (2006.01)
HO3K 19/173 (2006.01)
HO3K 19/0175 (2006.01)
(52) US.CL
CPC oo HO3K 19/017581 (2013.01)
PLD 100
STORAGE
SYSTEM 103

PROCESSING SYSTEM
102
i
INTERFACE
HO!

PLD EDITOR 120

STORAGE SYSTEM 123

PROGRAMMING ROUTINE 125
EDRITING ROUTINE 127
PLD CODE 1360

LIBRARY OF PLD CODE 5ETS t46

PROCESSING BYSTEM
122
1
INTERFACE
121

108 130

PLD COOE

U.S. Patent Aug. 18, 2015 Sheet 1 of 6

US 9,112,493 B2

PLD 100

PLD EDITOR 120

STORAGE
SYSTEM 133

STORAGE SYSTEM 123

PROGERAMMING ROUTINE

125
EDITING ROUTINE 127
PLD CODE 130
LIBRARY OF PLD CODE SETS 140
PROCESBING SYSTEM PROCESSHNG SYSTEM
192 122
i i
INTERFACE INTERFACE
10} 121

PLD CODE S
130

FiG. 1

U.S. Patent

Aug. 18, 2015 Sheet 2 of 6

PLD CODE 130

OPERATIONAL ROUTINE 131
INSTRUCTION BLOCK | 133
BLOCK 1 PARAMETER | 134
BLOCK 1 PARAMETER 2 134
BLOCK 1 PARAMETER 3 134
INSTRUCTION BLOCK 2 133
BLOCK 2 PARAMETER | 134
BLOCK 2 PARAMETER 2 134
INSTRUCTION BLOCK 3 133
BLOCK 3 PARAMETER | 134
BLOCK 3 PARAMETER 2 134
BLOCK 3 PARAMETER 3 134
BLOCK 3 PARAMETER 4 134
BLOCK 3 PARAMETER 5 134

FIG. 2

US 9,112,493 B2

U.S. Patent Aug. 18, 2015 Sheet 3 of 6 US 9,112,493 B2

PLD EDITOR 120

STORAGE SYSTEM 123

PROGRAMMING ROUTINE 128
EDITING ROUTINE 127
PLD CODE 130
LIBRARY OF PLD DEVICES 140

LIBRARY OF INSTR. BLOCKS 142
LIBRARY OF PLD CODE SETS 146

DISPLAY ROUTINE i52
COMPARISON ROUTINE 135
CORRECTION ROUTINE {58

PROCESSING SYSTEM
122
:

INTERFACE
121

FIG. 3

U.S. Patent Aug. 18, 2015 Sheet 4 of 6 US 9,112,493 B2

START

: 401
OBTAIN PLD CODE —

Y

COMPARE LOGIC INSTRUCTION BLOCKS OF PLD CODE —

v

403
DETERMINE INCONSISTENT LOGIC INSTRUCTION BLOCKS —

Y

INDICATE INCONSISTENT LOGIC INSTRUCTION BLOCKS L

Y

405
CORRECT INCONSISTENT LOGIC INSTRUCTION BLOCKS e

STOP

400

FIG. 4

U.S. Patent Aug. 18, 2015 Sheet 5 of 6 US 9,112,493 B2

501
OBTAIN PLD CODE —
% 502
COMPARE LOGIC INSTRUCTION BLOCKS OF PLD CODE ="
DETERMINE INCONSISTENT LOGIC INSTRUCTION BLOCKS | 903
AND INCONSISTENT BLOCK PARAMETERS
INDICATE INCONSISTENT LOGIC INSTRUCTION BLOCKS | o0
AND INCONSISTENT BLOCK PARAMETERS
CORRECT INCONSISTENT LOGIC INSTRUCTION BLOCKS | e 993
AND INCONSISTENT BLOCK PARAMETERS

FIG. S

U.S. Patent Aug. 18, 2015 Sheet 6 of 6 US 9,112,493 B2

inputl

TONR oo
m—-} E—-—-—-— Inconsistent Instruction m< ;)m
TONR_1 b
N
PRE UbDT |
ACC Output2
§
FIG. 6A
Inputi TONR
————] E———- Timer On Delay with Reset 1 ——{ ;:J }——-
TONR_ | C D
TimeBase N

ACC Output2

FIG. 6B

US 9,112,493 B2

1
PLD EDITOR AND METHOD FOR EDITING
PLD CODE

TECHNICAL BACKGROUND

Programmable Logic Devices (PLDs) are used in a variety
of control applications, such as controllers and/or drivers in
industrial applications. PL.Ds are low-cost devices that can be
programmed for specific control applications, such as for
operating electric motors, for example. The ability to program
PLDs makes them ideal for stand-alone applications.

Because of the widespread use and deployment of PLDs,
there is a continuing need to improve the reliability and ease-
of-use of such devices. One area for improvement is in pro-
gramming, wherein it is needed for a user to be able to quickly
and easily generate a complete set of programming code for a
particular PLD. However, it is also important that the pro-
gramming be correct and functional, without consuming an
excess amount of design and programming time on the part of
an engineer or other user.

A prior art approach to programming PLD devices is to
re-use existing programming, wherein the existing program-
ming may be modified and then used in a new application,
wherein existing programs are commonly modified and then
re-used in some fashion. However, this introduces a danger of
improper or incomplete programming because of the differ-
ences between an original PLD and a newly-modified PLD,
which may result in more lost time, rather than less time
consumed in the programming ofthe PLD device. In addition,
there is a danger that unneeded portions of the code may be
retained, wherein the retained code occupies memory space
and in some situations may result in improper behavior of the
PLD or associated device.

Overview

In an embodiment, a PL.D editor for editing PLD codeto be
programmed into a PLD is provided. The PLD editor includes
an interface for communicating with the PLD, a storage sys-
tem for storing the PLD code, a library of PLD devices, and a
library of logic instruction blocks, and a processing system
coupled to the interface and the storage system, with the
processing system configured to obtain a PLD code, with the
PLD code comprising one or more logic instruction blocks
and corresponding block parameters for each logic instruc-
tion block, with the PLD code being intended for program-
ming into the PLD, compare the one or more logic instruction
blocks of the PLD code to a subset of the library of logic
instruction blocks applicable to the PLD according to the
library of PLD devices, determine inconsistent logic instruc-
tion blocks of the one or more logic instruction blocks, indi-
cate the inconsistent logic instruction blocks, and correct the
inconsistent logic instruction blocks using the subset of the
library of logic instruction blocks.

This Overview is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Technical Disclosure. It should be understood that this
Overview is not intended to identify key features or essential
features of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a Programmable Logic Device (PLD)
coupled to a PLD editor.

FIG. 2 shows an exemplary PLD code.

FIG. 3 shows detail of an exemplary PLD editor.

FIG. 4 is a flowchart of'a PLD editing method for editing a
PLD code to be programmed into a PLD.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 is a flowchart of a PLD editing method for editing a
PLD code to be programmed into a PLD.

FIGS. 6 A-6B show an example graphic display generated
by the PLD editor to a user of the PLD editor.

DETAILED DESCRIPTION

The following description and associated drawings teach
the best mode of the invention. For the purpose of teaching
inventive principles, some conventional aspects of the best
mode may be simplified or omitted. The following claims
specify the scope of the invention. Some aspects of the best
mode may not fall within the scope of the invention as speci-
fied by the claims. Thus, those skilled in the art will appreciate
variations from the best mode that fall within the scope of the
invention. Those skilled in the art will appreciate that the
features described below can be combined in various ways to
form multiple variations of the invention. As a result, the
invention is not limited to the specific examples described
below, but only by claims and their equivalents.

FIG. 1illustrates a Programmable Logic Device (PLD) 100
coupledtoa PLD editor 120. The PLD editor 120 may be used
to generate portions of code or to generate an entire set of
programming code. The PLD editor 120 may be used to select
an existing set of programming code. The PLD editor 120
may beused to edit a selected PLD code 130 for programming
into the PL.D 100. The PLD editor 120 may be used to pro-
gram the PL.D code 130 into the PL.D 100. The PLD code 130
may be programmed into volatile or non-volatile memory
space in the storage system 103 of the PLD 100.

The PLD editor 120 may be coupled to the PLD 100 by a
communication link 108, as shown in the figure. The com-
munication link 108 may comprise any manner of communi-
cation link, including wired and wireless communication
links. The communication link 108 may be used to transfer
the PLD code 130 from the PLD editor 120 to the PLD 100.
The communication link 108 may be a temporary or perma-
nent link.

The PLD 100 may comprise any PL.D device. The PLD 100
includes an interface 101, a processing system 102, and a
storage system 103. The storage system 103 may receive and
store the PLD code 130. The storage system 103 may also
store a programming routine 125, an editing routine 127, and
a library of PLD code sets 146. In operation, the processing
system 102 of the PL.D 100 may retrieve and execute the PLD
code 130. The processing system 102 of the PLD 100, when
executing the PLD code 130, may be configured to perform
any desired PLD operations, including receiving and process-
ing inputs, communicating with an external device (not
shown), operating and/or controlling the external device, pro-
viding data to the external device, processing data from the
external device, monitoring operations of the external device,
including monitoring for faults or improper operation of the
external device, and accumulating data regarding the opera-
tion of the external device. This listing is not exhaustive and
other operations of the PLLD 100 are contemplated and are
within the scope of the description and claims.

The PLD code 130 may use predefined functions. The PL.D
code 130 may be represented by standardized symbols or
other representations. As a result, a user may be able to select
and implement these predefined functions, wherein the pro-
gramming may be completed by the user providing needed
parameters to complete the selected functions.

The PLD 100 may be configured to operate and/or drive an
electric motor, for example, as PLD devices are widely used
in motion control, positioning control, and torque control. In
one motor control example, the programming of the PLD

US 9,112,493 B2

3

code 130 may include timers that control various aspects of
motor operation, including a drive signal pulse width, a drive
signal duty cycle, and drive signal on and off times, among
other things. However, it should be understood that other or
additional uses of the PLD 100 are contemplated and are
within the scope of the description and claims.

The PLD editor 120 may include an interface 121, a pro-
cessing system 122, and a storage system 123. It should be
understood that the PLD editor 120 may further include addi-
tional components, circuits, or sub-systems (omitted for pur-
poses of clarity).

The interface 121 of the PL.D editor 120 may be coupled to
the interface 101 of the PLD 100 for transferring the PLD
code 130 to the PLD 100. The interface 121 of the PLD editor
120 may be coupled to the interface 101 of the PLLD 100 for
programming the PLD 100. During programming, a PLD
code 130 may be downloaded from the PLD editor 120 to the
PLD 100 and installed into the storage system 103 ofthe PLD
100.

The programming routine 125 is configured to transfer the
PLD code 130 to the PLD 100, including programming the
PLD code 130 into the PL.D 100. The programming routine
125 therefore may include appropriate erase and program-
ming cycle times, programming checks, programming veri-
fications, and programming sub-routines.

Even small differences in the intended use of the PLD 100
may require the PL.D code 100 to need editing, where the PL.D
code 130 is intended to be used in a different PLD device
and/or used in a different end application. Further, while the
fundamental concepts of PLD programming are common to
all manufacturers, even small differences in /O addressing,
memory organization, and instruction sets mean that PL.D
programs are never perfectly interchangeable between differ-
ent makers or even between different models.

The editing routine 127 of the PLD editor 120 may be
configured to determine inconsistent logic instruction blocks
in the PLD code 100 that are inconsistent with the PLD 100,
indicate the inconsistent logic instruction blocks to a user of
the PLD editor 120, and correct the inconsistent logic instruc-
tion blocks.

Alternatively, the PLD editor 120 may include a library of
PLD code sets 146 that stores one or more existing PL.D code
sets. A user of the PLD editor 120 may select the PLD code
130 from the library of PLD code sets 146 and edit the PLD
code 130 to re-use the PL.D code 130 for a new application.
Consequently, the editing routine 127 may be configured to
retrieve the PLD code 130 from the library of PLD code sets
146, determine inconsistent logic instruction blocks in the
PLD code 130 that are inconsistent with the PL.D 100, indi-
cate the inconsistent logic instruction blocks to a user of the
PLD editor 120, and correct the inconsistent logic instruction
blocks.

The library of PLD code sets 146 may be stored in the PLD
editor 120, as shown. Alternatively, some or all of the library
of PLD code sets 146 may be externally stored and accessed
by the PLD editor 120 via the interface 121 and a suitable
communication link (not shown). The communication link
may comprise a suitable wired or wireless link. The commu-
nication link may be different from or the same as the com-
munication link 108 used for programming the PLD 100.

FIG. 2 shows an exemplary PLD code 130. The PLD code
130 may include an operational routine 131 that is executed
by the processing system 102 of the PLD 100. In a motor
control application, the operational routine 131 may config-
ure the PLD 100 as a motor controller and may execute
various instructions that perform motor control operations.

10

15

20

25

30

35

40

45

50

55

60

65

4

The PLD code 130 may include one or more instruction
blocks 133. The one or more instruction blocks 133 comprise
logic instructions to be executed by the processing system
102 when executing the operational routine 131. In the motor
controller example, an instruction block 133 may comprise a
timer block that controls a timing aspect of motor control,
such as a drive signal pulse width, a drive signal duty cycle,
and drive signal on and off times, among other things.

The PLD code 130 may include block parameters 134 for
each instruction block 133. The block parameters 134 may
comprise values or other information required by the corre-
sponding instruction block 133. In the motor controller
example, an instruction block 133 comprising a timer block
may require parameters including a start time and a stop time,
for example. Each instruction block 133 may require a spe-
cific number of block parameters 134, depending on factors
such as the characteristics, requirements, or design of the
PLD 100, the end use/application, and the particular instruc-
tion block 133 (i.e., different timer blocks may require dif-
fering numbers of parameters). Other or additional factors are
contemplated and are within the scope of the description and
claims.

FIG. 3 shows detail of an exemplary PLD editor 120. In this
example, the storage system 123 of the PLD editor 120 stores
the programming routine 125, the editing routine 127, the
PLD code 130, and the library of PLD code sets 146, as
previously discussed. The storage system 123 may addition-
ally store a library of PLD devices 140, a library of logic
instruction blocks 142, a display routine 152, a comparison
routine 155, and a correction routine 158.

The library of PLD devices 140 comprises a library of PL.D
devices and associated information that may be needed for
programming. The library of PLD devices 140 may comprise
known PLD devices. The library of PLD devices 140 may
comprise commonly or previously used PLD devices. The
library of PLD devices 140 may comprise PL.D devices that
are anticipated to be used at some point in time. The library of
PLD devices 140 may comprise PL.D devices wherein code
for the PLD devices has already been created and/or edited.

The library of PLD devices 140 may include PLD infor-
mation for one or more PL.D models, for example. The library
of PLD devices 140 may include PLD information for one or
more PLD manufacturers, for example. However, other PL.D
information is contemplated and is within the scope of the
description and claims.

The library of PLD devices 140 may be stored in the PL.D
editor 120, as shown. Alternatively, some or all of the library
of PLD devices 140 may be externally stored and accessed by
the PLD editor 120 via the interface 121 and a communication
link.

The library of logic instruction blocks 142 comprises a
library of atleast a portion of possible logic instruction blocks
133 that can be used in applicable PL.D devices. The library of
logic instruction blocks 142 may store a variety of logic
instruction blocks that perform specific functions. Further,
the library of logic instruction blocks 142 may store a variety
oflogic instruction blocks that use differing parameters, such
as families of logic instruction blocks that perform a similar
function but may use different parameters and/or differing
numbers of parameters. In the motor controller example, the
library of logic instruction blocks 142 may store a variety of
timer blocks, wherein a particular timer block may be
selected according to the characteristics of the particular time
block and the intended timer operation.

The library oflogic instruction blocks 142 may be stored in
the PLD editor 120, as shown. Alternatively, some or all of the
library of logic instruction blocks 142 may be externally

US 9,112,493 B2

5

stored and accessed by the PLD editor 120 via the interface
121 and a communication link.

The display routine 152 comprises a routine configured to
display the logic instruction blocks 133 of the PLD code 130
during an editing procedure. The logic instruction blocks 133
may be displayed by the display routine 152 in order to show
the user which logic instruction blocks 133 are included in the
PLD code 130. The logic instruction blocks 133 may be
displayed by the display routine 152 in order to show the logic
instruction blocks 133 that are proper for the PLD 100 and
that are properly configured. The logic instruction blocks 133
may be displayed by the display routine 152 in order to show
inconsistent logic instruction blocks, i.e., the logic instruction
blocks 133 that are improper for the PLD 100, are improperly
configured, or both.

The display routine 152 may visually indicate any incon-
sistent logic instruction blocks. The display routine 152 may
display inconsistent logic instruction blocks in a different
color. The display routine 152 may display inconsistent logic
instruction blocks in ghosted or dashed lines. The display
routine 152 may display inconsistent logic instruction blocks
using different lines, different colors, different color intensi-
ties, or different gray scale values. The display routine 152
may display inconsistent logic instruction blocks by varying
an aspect or aspects of the inconsistent logic instruction
blocks. However, it should be understood that the display
routine 152 may indicate inconsistent logic instruction blocks
in any suitable fashion.

The comparison routine 155 comprises a routine config-
ured to compare one or more logic instruction blocks 133 and
determine whether the one or more logic instruction blocks
133 are proper for the PLD 100. The comparison may com-
prise a comparison of the one or more logic instruction blocks
133 to a subset of the library of instruction blocks 142 accord-
ing to the PLD device information in the library of PLD
devices 140. By indexing into the library of instruction blocks
142 using the target PL.D 100, a set of proper logic instruction
blocks can be compared to the one or more logic instruction
blocks 133.

The correction routine 158 comprises a routine configured
to correct an identified inconsistent logic instruction block.
The correction routine 158 may auto-correct the identified
inconsistent logic instruction block. The correction routine
158 may present a request for specific information from the
user, such as an indication that the user should fill in a missing
block parameter or parameters 134. The correction routine
158 may indicate information that is not needed in a logic
instruction block 133 (i.e., one or more unneeded block
parameters 134). The correction routine 158 may indicate
information that has been automatically deleted from a logic
instruction block 133.

When the processing system 122 executes the editing rou-
tine 127 in one example, the editing routine 127 may config-
ure the processing system 122 to obtain the PLD code 130,
with the PLD code 130 comprising one or more logic instruc-
tion blocks 133 and corresponding block parameters 134 for
each logic instruction block of the one or more logic instruc-
tion blocks 133, with the PLD code 130 being intended for
programming into the PLD 100 (i.e., the user may select a
PLD code that is already highly suited for the intended PLD
100), compare the one or more logic instruction blocks 133 of
the PLD code 130 to a subset of the library of logic instruction
blocks 142 according to the library of PLD devices 140,
determine inconsistent logic instruction blocks of the one or
more logic instruction blocks 133, indicate the inconsistent
logic instruction blocks to a user of the PLD editor 120, and

10

15

20

25

30

35

40

45

50

55

60

65

6

correct the inconsistent logic instruction blocks using the
subset of the library of logic instruction blocks 142.

When the processing system 122 executes the editing rou-
tine 127 in another example, the editing routine 127 may
configure the processing system 122 to obtain the PLD code
130, with the PLD code 130 comprising one or more logic
instruction blocks 133 and corresponding block parameters
134 for each logic instruction block of the one or more logic
instruction blocks 133, with the PL.D code 130 being intended
for programming into the PL.D 100, compare the one or more
logic instruction blocks 133 of the PLD code 130 to a subset
of'the library of logic instruction blocks 142 according to the
library of PLD devices 140, determine inconsistent logic
instruction blocks of the one or more logic instruction blocks
133, indicate the inconsistent logic instruction blocks to a
user of the PLD editor 120, wherein the inconsistent logic
instruction blocks may include inconsistent logic instruction
blocks 133 or inconsistent block parameters 134, and correct
the inconsistent logic instruction blocks using the subset of
the library of logic instruction blocks 142, wherein inconsis-
tent logic instruction blocks 133 and inconsistent block
parameters 134 are corrected.

FIG. 4 is a flowchart 400 of a PLD editing method for
editing a PLD code 130 to be programmed into a PLD 100. In
step 401, the PLD code 130 is obtained. The user may select
or specify the PLD code 130. The PLD code 130 may be a
pre-existing PLD code 130, for example. The PLD code 130
may be obtained from a library of PLD code sets 146 stored in
the PLD editor 120. Alternatively, the PLD code 130 may be
obtained from other sources external to the PLD editor 120.

The PLD code 130 may be modified by a user of the PLD
editor in order to program the PLD code 130 into a target PLD
100. Modifying the PL.D code 130 may be more time-efficient
than creating a new PLD code from scratch. Further, modi-
fying the PLD code 130 may result in a lower risk of pro-
gramming errors in the resulting code, especially where the
target PLD 100 is minimally different from a PLD device
where the PLD code 130 was previously used.

In step 402, logic instruction blocks 133 of the PLD code
130 are compared to the library of logic instruction blocks
142. The comparison may comprise a comparison of the one
or more logic instruction blocks 133 to a subset of the library
of instruction blocks 142 according to the PLD device infor-
mation inthe library of PLD devices 140. By indexing into the
library of instruction blocks 142 using the target PLD 100, the
one or more logic instruction blocks 133 can be compared to
a set of proper logic instruction blocks.

In step 403, inconsistent logic instruction blocks of the one
ormore logic instruction blocks 133 are determined as a result
of the comparison.

In step 404, the inconsistent logic instruction blocks are
indicated. The indication may comprise an indication to the
user of the PLD editor 120. The indication may comprise a
visual indication to the user of the PLD editor 120. The
inconsistent logic instruction blocks may be visually indi-
cated in ghosted or dashed lines. The inconsistent logic
instruction blocks may be visually indicated using different
lines, different colors, different color intensities, or different
gray scale values. The inconsistent logic instruction blocks
may be visually indicated by varying an aspect or aspects of
the inconsistent logic instruction blocks. However, it should
be understood that the inconsistent logic instruction blocks
may be indicated in any suitable fashion.

In step 405, the inconsistent logic instruction blocks are
corrected. The inconsistent logic instruction blocks are cor-
rected so that the PLD code 130 can be programmed into the
PLD 100. The inconsistent logic instruction blocks are cor-

US 9,112,493 B2

7
rected so that the PLD code 130, when programmed into the
PLD 100, will properly and efficiently operate the PLD 100
when executed by the PLD 100.

The correction may include removing unneeded or
improper logic instruction blocks 133. The correction may
include modifying improper logic instruction blocks 133. The
correction may include supplying proper logic instruction
blocks 133 for the PLD 100.

FIG. 5 is a flowchart 500 of a PLD editing method for
editing a PLD code 130 to be programmed into a PLD 100. In
step 501, the PLD code 130 is obtained, as previously dis-
cussed.

In step 502, logic instruction blocks 133 of the PLD code
130 are compared to the library of logic instruction blocks
142, as previously discussed.

In step 503, inconsistent logic instruction blocks 133 of the
one or more logic instruction blocks 133 and inconsistent
block parameters 134 are determined as a result of the com-
parison, as previously discussed.

In step 504, the inconsistent logic instruction blocks 133
and the inconsistent block parameters 134 are indicated. The
indication may comprise an indication to the user of the PLD
editor 120, as previously discussed. The indication may com-
prise a visual indication to the user of the PLD editor 120, as
previously discussed.

In step 505, the inconsistent logic instruction blocks 133
and the inconsistent block parameters 134 are corrected. The
inconsistent logic instruction blocks 133 and the inconsistent
block parameters 134 are corrected so that the PLD code 130
can be programmed into the PL.D 100. The inconsistent logic
instruction blocks 133 and the inconsistent block parameters
134 are corrected so that the PLD code 130, when pro-
grammed into the PLD 100, will properly and efficiently
operate the PL.D 100 when executed by the PLD 100.

The correction may include removing unneeded or
improper logic instruction blocks 133. The correction may
include removing unneeded or improper block parameters
134 of logic instruction blocks 133.

The correction may include modifying improper logic
instruction blocks 133. The correction may include modify-
ing improper block parameters 134 oflogic instruction blocks
133.

The correction may include supplying proper logic instruc-
tion blocks 133 for the PLD 100. The correction may include
supplying proper block parameters 134 for logic instruction
blocks 133.

FIG. 6A shows an example graphic display generated by
the PLD editor 120 to a user of the PLD editor 120. The
display comprises an example display of a Timer On Delay
with Reset (TONR) block, wherein the TONR block is visu-
ally/graphically indicated to be improper. In the example
shown, the improper status of the TONR block is visually
indicated by the TONR instruction block comprising a dashed
line. It should be understood that the dashed box could be
fixed in nature, could be generated in a different color from a
proper instruction block, or could be moved, flashed, or oth-
erwise animated or varied in appearance over a period of time.

In addition, the display of the improper instruction block
can be accompanied by display text. The display text can
further indicate that the instruction block is improper. The
displayed text can further call out how the instruction block is
improper. For example, in the TONR block shown in the
figure, the displayed block could be accompanied by text
stating that the Input PRE and all of its bindings are unsup-
ported in the TONR block. The text can inform the user that
the TONR block cannot be used as it is.

10

15

20

25

30

35

40

45

50

55

65

8

Further, the display of the improper instruction block can
be accompanied by a graphical input icon or icons that can be
selected by the user. For example, the graphical input icon
could comprise a selection of proper values or configurations
that can be used as a replacement for an improper value or
configuration. For example, the graphical input selection
could comprise an “auto-correct” feature, wherein when the
auto-correct graphical input selection is selected by the user,
the PLD editor 120 makes an automatic correction to the
improper instruction block, wherein the user must select the
auto-correct feature but does not have to perform the correc-
tion or know how to correct the improper instruction block.

FIG. 6B shows the graphic display generated by the PL.D
editor 120 after the improper instruction block of FIG. 6 A has
been corrected. The instruction block is now shown with a
solid line, indicating that the instruction block is properly
configured and is properly used in the instruction set. Further,
the instruction block shows that the “PRE” instruction block
parameter section has been changed.

The above description and associated figures teach the best
mode of the invention. The following claims specify the scope
of'the invention. Note that some aspects of the best mode may
not fall within the scope of the invention as specified by the
claims. Those skilled in the art will appreciate that the fea-
tures described above can be combined in various ways to
form multiple variations of the invention. As a result, the
invention is not limited to the specific embodiments described
above, but only by the following claims and their equivalents.

What is claimed is:

1. A Programmable Logic Device (PLD) editor for editing
PLD code to be programmed into a PLD, the PLD editor
comprising:

an interface for communicating with the PLD;

a storage system for storing the PLD code, a library of PL.D

devices, and a library of logic instruction blocks; and

a processing system coupled to the interface and the stor-

age system, with the processing system configured to
obtain the PLD code, with the PL.D code comprising one
or more logic instruction blocks and corresponding
block parameters for each logic instruction block of the
one or more logic instruction blocks, with the PL.D code
being intended for programming into the PLD, compare
the one or more logic instruction blocks of the PL.D code
to a subset of the library of logic instruction blocks
applicable to the PLD according to the library of PLD
devices, determine inconsistent logic instruction blocks
of the one or more logic instruction blocks, indicate the
inconsistent logic instruction blocks, and correct the
inconsistent logic instruction blocks using the subset of
the library of logic instruction blocks.

2. The PLD editor of claim 1, with indicating the inconsis-
tent logic instruction blocks further comprising visually indi-
cating the inconsistent logic instruction blocks.

3. The PLD editor of claim 1, with correcting the inconsis-
tent logic instruction blocks comprising correcting the incon-
sistent logic instruction blocks without the user initiating
corrections or inputting corrections.

4. The PLD editor of claim 1, with correcting the inconsis-
tent logic instruction blocks comprising:

the PLD editor accessing a library of instruction blocks and

indicating any inconsistent logic instruction blocks to
the user;

the PLD editor retrieving and displaying alternative logic

instruction blocks to the user; and

the PLD editor receiving user instruction selections and

implementing the selected logic instruction blocks in the
inconsistent logic instruction blocks.

US 9,112,493 B2

9

5. The PLD editor of claim 1, with correcting the inconsis-
tent logic instruction blocks comprising:

the PLD editor accessing a library of instruction blocks and
indicating any inconsistent block parameters to the user;
and

the PLD editor receiving user parameter selections and
implementing the selected block parameters in the
inconsistent logic instruction blocks.

6. The PLD editor of claim 1, with correcting the inconsis-

tent logic instruction blocks comprising:

the PLD editor accessing a library of instruction blocks and
indicating any inconsistent block parameters to the user;

the PLD editor indicating a parameter range for the
selected block parameters to the user; and

the PLD editor receiving user parameter selections and
implementing the selected block parameters in the
inconsistent logic instruction blocks.

7. The PLD editor of claim 1, with the PLD code being

obtained from a library of PLD code sets.

8. A Programmable Logic Device (PLD) editing method
for editing PLD code to be programmed into a PLD, the
method comprising:

a PLD editor obtaining the PLD code, with the PLD code
comprising one or more logic instruction blocks and
corresponding block parameters for each logic instruc-
tion block of the one or more logic instruction blocks,
with the PLD code being intended for programming into
the PLD;

the PLD editor comparing the one or more logic instruction
blocks of the PLD code to a subset of the library of logic
instruction blocks applicable to the PLD according to
the library of PLD devices;

the PLD editor determining inconsistent logic instruction
blocks of the one or more logic instruction blocks;

the PLD editor indicating the inconsistent logic instruction
blocks to a user of the PLD editor; and

the PLD editor correcting the inconsistent logic instruction
blocks using the subset of the library of logic instruction
blocks.

9. The method of claim 8, with indicating the inconsistent
logic instruction blocks further comprising visually indicat-
ing the inconsistent logic instruction blocks.

10. The method of claim 8, with correcting the inconsistent
logic instruction blocks comprising correcting the inconsis-
tent logic instruction blocks without the user initiating cor-
rections or inputting corrections.

11. The method of claim 8, with correcting the inconsistent
logic instruction blocks comprising:

the PLD editor accessing a library of instruction blocks and
indicating any inconsistent logic instruction blocks to
the user;

the PLD editor retrieving and displaying alternative logic
instruction blocks to the user; and

the PLD editor receiving user instruction selections and
implementing the selected logic instruction blocks in the
inconsistent logic instruction blocks.

12. The method of claim 8, with correcting the inconsistent

logic instruction blocks comprising:

the PLD editor accessing a library of instruction blocks and
indicating any inconsistent block parameters to the user;
and

the PLD editor receiving user parameter selections and
implementing the selected block parameters in the
inconsistent logic instruction blocks.

13. The method of claim 8, with correcting the inconsistent

logic instruction blocks comprising:

10

15

20

25

30

35

40

45

50

55

60

65

10

the PLD editor accessing a library of instruction blocks and
indicating any inconsistent block parameters to the user;

the PLD editor indicating a parameter range for the
selected block parameters to the user; and

the PLD editor receiving user parameter selections and
implementing the selected block parameters in the
inconsistent logic instruction blocks.

14. The method of claim 8, with the PLD code being
obtained from a library of PLD code sets.

15. A Programmable Logic Device (PLD) editing method
for editing PLD code to be programmed into a PLD, the
method comprising:

a PLD editor obtaining the PL.D code, with the PL.D code
comprising one or more logic instruction blocks and
corresponding block parameters for each logic instruc-
tion block of the one or more logic instruction blocks,
with the PLD code being intended for programming into
the PLD;

the PLD editor comparing the one or more logic instruction
blocks of the PLD code to a subset of the library of logic
instruction blocks applicable to the PLD according to
the library of PLD devices;

the PLD editor determining inconsistent logic instruction
blocks of the one or more logic instruction blocks and
inconsistent block parameters;

the PLD editor indicating the inconsistent logic instruction
blocks to a user of the PLD editor, wherein the incon-
sistent logic instruction blocks may include one or both
of inconsistent logic instruction blocks or inconsistent
block parameters; and

the PLD editor correcting the inconsistent logic instruction
blocks using the subset of the library of logic instruction
blocks, wherein inconsistent logic instruction blocks
and inconsistent block parameters are corrected.

16. The method of claim 15, with indicating the inconsis-
tent logic instruction blocks further comprising visually indi-
cating the inconsistent logic instruction blocks.

17. The method of claim 15, with correcting the inconsis-
tent logic instruction blocks comprising correcting the incon-
sistent logic instruction blocks without the user initiating
corrections or inputting corrections.

18. The method of claim 15, with correcting the inconsis-
tent logic instruction blocks comprising:

the PLD editor retrieving and displaying alternative logic
instruction blocks to the user; and

the PLD editor receiving user instruction selections and
implementing the selected logic instruction blocks in the
inconsistent logic instruction blocks.

19. The method of claim 15, with correcting the inconsis-
tent logic instruction blocks comprising the PLD editor
receiving user parameter selections and implementing the
selected block parameters in the inconsistent logic instruction
blocks.

20. The method of claim 15, with correcting the inconsis-
tent logic instruction blocks comprising:

the PLD editor indicating a parameter range for the
selected block parameters to the user; and

the PLD editor receiving user parameter selections and
implementing the selected block parameters in the
inconsistent logic instruction blocks.

#* #* #* #* #*

